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A finite-difference Navier-Stokes model has been used to study rotating baroclinic 
flow for Richardson number ,< 1, assuming no variations except in the vertical plane 
wholly containing the density-gradient vector. A section of a horizontally infinite 
channel has been studied, assuming periodic boundary conditions a t  the vertical 
computational boundaries and no-slip conducting horizontal boundaries. Two con- 
figurations were studied, both of which have an analytic basic solution with no 
horizontal variations in the velocities or density gradients. Symmetric baroclinic 
waves developed in the flows, as long as the Richardson number was not too large 
and the thermal Rossby number was large enough (for fixed diffusion parameters), 
consistent with linear theory. The structures and energetics of the fully developed 
waves were found to be especially dependent upon the Prandtl number Pr. Potential 
energy was the ultimate wave-energy source in all cases, and the average zonal flow 
was never much affected by the waves. For Pr > 1 the conversion from potential 
energy to wave kinetic energy was direct, via temperature and vertical-motion 
correlation. For Pr < 1 the conversion was from potential energy, to average kinetic 
energy by virtue of an induced meridional flow, to wave kinetic energy. For Pr = 1 
the energy conversion was by either or both of the above, depending upon the other 
parameters. 

1. Introduction 
In  the mid-1960s symmetric baroclinic instability (hereafter SBI) received a revival 

in interest, with work by Ooyama (1966), Stone (1966,1970,1972), McIntyre (1970a), 
Yanai & Tokioka (1969), Tokioka (1970) and others. The physical mechanism for the 
instability is simply explained as a combined effect of buoyancy and inertial restoring 
forces (see Hoskins 1978). This is illustrated in figure 1, which is drawn in a vertical 
plane wholly containing the basic density (or temperature) gradient (the ' meridional ' 
plane). For simplicity a zonal flow in thermal wind balance with a constant 
temperature gradient is considered. For Richardson number Ri between 0 and 1 the 
flow is stable in both the convective and inertial sense, but may be unstable when 
the two restoring forces act together. The instabilities consist of meridional motions 
a t  angles intermediate to those of angular momentum M and temperature T contours, 
with deviation temperature and zonal momentum structures compatible with those 
motions. If diffusion is present the two restoring forces are damped; if the Prandtl 
number (viscosity divided by thermal diffusivity) differs from unity the dampings 
of the two forces me unequal. McIntyre ( 1 9 7 0 ~ )  has shown that in this case instability 
can occur for Ri > 1 (all boundary effects ignored). 

The energy-release mechanism for SBI can be either buoyancy or inertial or a 
combination of the two (Stone 1972; Tokioka 1970). This appears to be a source of 
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FIQURE 1. For Richardson number Ri less than 1 (i.e. isotherms more vertical than angular 
momentum surfaces) a fluid particle displaced a t  an angle intermediate to those of temperature 
and angular momentum surfaces will feel a vertical buoyancy restoring force and a horizontal 
inertial restoring force, resulting in a net force away from the initial position. 

confusion, since previous authors (e.g. Emanuel 1979); Weber 1980; Busse & Chen 
1981) have stated that the inertial mechanism is the source. This is true for the 
fastest-growing inviscid mode, which has zero wavelength (Stone 1972), and for 
Emanuel’s viscous hydrostatic waves for the particular cases he considered. However, 
the energy source may be expected, in general, to be dependent upon the particular 
combination of parameters. I n  particular, one would expect a strong Prandtl-number 
dependence, since one of either the inertial or buoyancy forces can become dominant 
for Pr =+ 1 .  This point has not been ellucidated in previous works, although from the 
work of McIntyre i t  may be seen that the angles of the meridional motion for cases 
of Ri > 1 are such that heat and angular momentum are transported upward for 
Pr > 1 and downward for Pr < 1. (That is, the motions are more to the horizontal 
in the former case and more to the vertical in the latter.) 

Unlike the conventional, three-dimensional baroclinic instability associated with 
large Richardson numbers, SBI has not been well observed, either in the laboratory 
or in the atmosphere. Bennetts & Hoskins (1979), Weber (1980) and Emanuel (1979, 
1982) have discussed the possible importance of SBI in organizing mesoscale systems 
in the atmosphere, although there have been no reports of detailed observations of 
the phenomenon. Calman (1977) suggests SBI as an explanation of some oceanic 
phenomena. I n  thermally driven laboratory experiments, Stone et aE. (1969) and 
Hadlock, Na & Stone (1972) claimed to  have found symmetric baroclinic instability. 
I n  these experiments the horizontal temperature gradient was supplied by upper and 
lower conducting boundaries, the sidewalls being insulators. I n  this manner the 
interior Richardson number was constrained to  be small, whereas in the side-heated 
annulus (e.g. Fowlis & Hide 1965) meridional overturning results in the interior 
Richardson number being large. The results of the experiments by Stone et al. and 
Hadlock et al. were, however, inconclusive, primarily because of the lack of detailed 
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FIQURE 2. Schematic diagram of the rotating channel, with an imposed temperature gradient on 
the horizontal surfaces. Arrows indicate direction of the Hadley cell. 

measurements or other definitive observations. In numerical, studies Quon (1980, 
1981) found that Bknard-type symmetric instability of the horizontal boundary 
layers in these experiments were likely to prevent the formation of orderly symmetric 
baroclinic cells. 

In  a mechanically driven experiment Calman (1977) found an apparently symmetric 
instability for effectively a large Prandtl number. However, Calman reported that 
the effect of the waves upon the average potential energy (density profile with height) 
was insignificant, and that the effect on average zonal velocity was large, which is 
a t  variance with the results of the present study for large Prandtl number. Indeed, 
if the diffusion of density (salt in Calman's case) is very small, then one would expect 
that the advection by the meridional motions could carry the density variations with 
the flow (unless all motion is within a region of constant density) and thus affect the 
mean potential energy. Calman offered no theoretical explanation for his mean- 
transport observations. 

Williams (1968, 1970) and McIntyre (1970h) point to symmetric baroolinic 
instabilities in calculations of flow in a side-heated annulus with free surfaces 
everywhere except the bottom (not, of course, physically realizable). The evidence 
supporting the presence of SBI was particularly strong for Pr = 7 .  When no-slip 
sidewalls are assumed in the calculations, the meridional heat transport by the 
viscous sidewall layers and the constraint upon the angular momentum contours 
result in a larger Ri, suppressing SBI. 

Despite the scarcity of evidence that SBI may physically exist, it  has been 
extensively theoretically studied - as we have already mentioned. The more recent 
works have included full viscous effects on flow confined between infinite horizontal 
boundaries. The study by Antar & Fowlis (1982) considers the stability of a rotating 
Hadley cell in an infinite channel with a constant horizontal temperature gradient 
imposed upon the upper and lower boundaries (figure 2). I n  this case there exists a 
solution to the full (Boussinesq) Navier-Stokes equations (with centrifugal force 
neglected) in which velocities and thermal gradients are independent of y. The known 
existence of a basic state and the fact that  i t  is an approximation to the experiments 
of Stone et al. and Hadlock et al. makes this configuration appear to be attractive 
for systematic study. Antar & Fowlis calculated SBI growth rates and constructed 
critical curves in parameter space for varying Prandtl number, thermal Rossby 
number, Ekman number and vertical temperature difference. The approximate 
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Richardson number a t  mid-depth is a simple function of these. Their results for very 
small Ekman number agreed well with those of McIntyre ( 1 9 7 0 ~ )  when the Prandtl 
number was not small; agreement was fair for small Prandtl number. This study did 
not investigate any finite-amplitude effects, nor did they report on energy 
conversions. 

Another, simpler, basic state that  is a solution to the full equations was used in 
the other referenced works. I n  this case, the upper and lower boundaries move with 
the zonal flow, and therefore there is no basic meridional flow (i.e. no boundary layers) 
in the basic state. As we shall see, this configuration (hereinafter the ‘Eady’ basic 
state) is more generally amenable to the type of study undertaken here. 

Walton (1975) has performed a viscous hydrostatic study of SBI, including effects 
of upper and lower boundaries in the stability problem and also examining weak 
nonlinearity in the flow. Although Waltonexamined the horizontal angular momentum 
wave flux, he did not examine the energetics, and in particular the dependence of 
the energetics on Prandtl number - perhaps the most interesting result of the present 
study. Weber’s (1980) study was a linear non-hydrostatic study of the same 
configuration as Walton, and pointed out the dependence of the critical Richardson 
number upon the Rossby, Prandtl and Ekman numbers. He did not calculate 
eigenfunctions or their energetics. 

The existence of known basic states (solutions to the full equations) puts the 
previously described baroclinic configurations on a par with the BBnard-convection 
problem in opportunity for the numerical study of fully nonlinear evolution of 
two-dimensional instabilities. I n  this study we have used a finite-difference Navier- 
Stokes model to calculate flows in a section of a horizontally ‘infinite’ domain, 
assuming periodicity a t  the endwalls of the section. We have focused our efforts upon 
the structures and energetics of fully developed steady waves, and upon the 
dependence of these upon the Prandtl, Rossby, Ekman and Richardson numbers. 

2. Equations and models 
2.1. Basic equations 

We consider a channel of effectively infinite horizontal extent, rotating about a 
vertical axis far from the region of interest with rate Q. Gravity g is downward, and 
centrifugal buoyancy effects are neglected. The upper and lower boundaries are rigid 
surfaces, separated by a distance D. The fluid’s thermal expansivity, viscosity and 
thermal diffusivity are denoted by a, v and K respectively. Upon the horizontal plates 
is imposed a constant temperature gradient of amplitude y.  

We take as our coordinate system the Cartesian (2, y, z )  where z increases upward 
and y increases in the direction of the horizontal projection of -VT.  We may think 
of the direction of increasing y as ‘northward’ and the direction of increasing x as 
‘eastward ’. Distance, time, velocity, temperature and pressure are non-dimensional- 
ized by the quantities D, Q-l, gaDylS2, yD and gap, yD2 following Antar & Fowlis 
(1982) (po is a reference density). The Boussinesq system of equations governing the 
flow assuming a/ax = 0 are 
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-cash R(2-i) cos R(z+$)]/h(R),  

g(z )  = [sinh R(z++) sinR(z-4) 

- sinh R(z - 4) sin R(z + $) ] /h (R) ,  

h(R) = sinh2 +R -t- sin2 iR, 

where 

are the Rossby, Ekman and Prandtl numbers. Here T is the temperature deviation 
from a reference value and P is the pressure deviation from the hydrostatic a t  the 
reference temperature. The velocity components u, v and w correspond to the 
coordinates x, y and z. 

When the rigid horizontal plates are corotating a t  rate O the boundary conditions 
are 

a t  z = +;, where AT is the dimensionless temperature difference between the top and 
bottom plates for fixed y. 

There exists a solution to (2.1)-(2.7) in which velocities and temperature gradients 
are independent of y:  

U( 2) = -if( 2) + 42, 
V(Z) = -ig(z), 

T(y, z )  = -y+zAT+@!oPr(Bz-$j’(z)), 

w = o ,  
where 

This solution is given in Antar & Fowlis (1982). The basic-state velocity components 
and temperature profile for a particular case may be seen in figure 4. A meridional 
flow in Ekman layers (i.e. the Hadley cell) results in significant thermal advection 
(for P r  not too small). There exist thermal boundary layers in which aT/az < 0, and 
in which BBnard-like convection can occur, depending of course upon the parameters. 
A local Rayleigh number may be defined as 

- qaAT, D& 
VK 

Ra, = , (2.10) 

where AT, is the negative dimensional temperature difference in the boundary layers, 
and D, is the depth of those layers. We may expect boundary-layer instability i f R a ,  

B L M  142 12 
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becomes much larger than lo3 ; the exact critical Ra, is presumably a function of the 
other parameters and is not determined in this investigation. 

The Richardson number 

where the asterisk denotes dimensional quantities. Ri is a function of space, but a t  
the midpoint in the Hadley-cell model 

4AT 
Ri x Pr+-.  

Ro 
(2.11) 

In the configuration with moving boundaries the boundary condition on the 
dimensionless u becomes 

u =  i-: a t  z=+' - 2, (2.12) 

and all other boundary conditions are the same as (2.7). I n  this case the basic state 
is simply 

(2.13) 1 v =  w = 0 ,  
lJ = '2 

T = - ~ + . z A T .  
2 9  

The Richardson number is constant in space and is 4 ATIRo. I n  the Eady-state model, 
the (possibly unstable) boundary layers in the basic state do not exist. Of course, there 
will exist boundary layers in the waves, and conceivably these could become unstable 
if the waves become strong enough. 

2.2.  Numerical technique 

A computer code was adapted from that of Miller & Gall (1983a), in which the basic 
equations in spherical coordinates are solved by standard time-marching finite- 
difference methods. All curvature terms were removed, and the code used in the 
present study is in Cartesian geometry. The horizontal extent of the integration 
domain is a finite distance L, and periodic boundary conditions on u, v, w, and WT 
are assumed a t  the endwalls. The grid is regular in the horizontal, and i t  is stretched 
in the vertical to increase resolution near the boundaries. The stretching function used 
here is 

(2.14) 

Az(k )  = {$[l- cos 27~z,)p/I'+ S, 

k- 1 
2, = ~ 

K-1'  

where k is the vertical index and 6 and p are grid parameters, along with the number 
of intervals in the horizontal ( J )  and vertical ( K )  and the length L. Larger 6 gives 
less stretching ; the parameter p controls where the fastest stretching occurs. These 
parameters are given in tables 1 and 2 which are summaries of calculations performed. 
Obviously, care must be taken to choose all of these parameters appropriately. For 
example, L must be large enough to accommodate the most-favoured wavelengths 
for a particular case, but i t  cannot be so large (for fixed J )  that  important (short) 
wavelengths are poorly resolved. The choice of L was initially guided by t,he results 
of Weber (1980) and Antar & Fowlis (1982). I n  all cases (unless Ri/Ri, was fairly 
small) it was found that the dominant wavelength here was somewhat longer than 
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the critical wavelength from Wever (1980). For those cases that are studied here in 
some detail (cases B1, B2, B3), that  L which gave maximum total kinetic energy 
density was found to within 10 %. 

In  all cases reported here the initial condition for the integration was the analytic 
basic state. I n  the Hadley-cell model computer round-off error was sufficient to 
perturb the basic state and to initiate wave growth. In  the Eady-state model, where 
there is no meridional flow in the basic state, a small random meridional flow and 
temperature perturbation were used to initiate instabilities. 

2.3. Energy conversions 

All components u, v. w and T may be partitioned into ‘horizontal-average’ and 
‘deviation’ values: 

u(y, 2, t )  = qz, t )  +a’(!/, Z,t), 

v(y, Z ,  t )  = V ( Z >  t )  + v’(y, z , t ) ,  

w(y, Z ,  t )  = 0 + w’(y, 2, q,  
T(y,z,t) = -Y+T(z , t )+T’(y , z , t ) ,  

where the horizontal averages of all deviation (primed) quantities are zero. Kinetic- 
and potential-energy equations can be derived from (2.1)-(2.4) in the usual manner: 

where 

-- a(KE) - (w‘T’) + ( V Z )  + ( F )  
at 

-- a<pE) - - (w’T’) - ( V Z )  + (D) 
at* 

(2.17) 

= - (4)  - (EJ + ( U ) ,  (2.18) 

(2.19) KE = i(u2 + v 2  + w2), 
KE’ = ;(uJ2 + v’2 + w‘z), (2.20) 

KE = KE - KE’, (2.21) 

PE = -zT/Ro. (2.22) 

~ 

The angular brackets ( ) refer to volume integration throughout space, and ( F )  and 
(0) refer to viscous and conductive dissipation. 

An important consideration for the purposes here is the signs and the relative sizes 
of the individual terms on the right-hand side of (2.16). If the first term is positive 
and dominates, then the extraction of energy for the waves is primarily of a 
convective nature. That is, the wave kinetic energy is obtained directly from the flow’s 
potential energy. If the second or third terms are positive and dominant, the wave 
energy is obtained from the kinetic energy of the horizontal average state. The term 
(E,)  represents PE-KE conversion due to heat being advected into and out of 
the finite section of the channel. I n  the Eady-state model this term has entirely 

12 2 
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nonlinear origins, since there is no V in the basic state. I n  the Hadley-cell model this 
conversion is present in the basic state, due to the boundary layers, and is balanced 
by conduction through the upper and lower boundaries. Of interest here is the 
difference between the value of this term in the analytic basic state and ?is value after 
waves have developed. 

2.4. Angular momentum 
I n  the infinite-channel model, angular momentum is not strictly defined, since the 
radius outward from the axis of rotation is not defined. A quantity M ,  whose 
derivatives are defined below, can be easily shown to be the quantity that is analogous 
to angular momentum in terms of inertial stability (see Hoskins 1978) : 

I (2.23) 

Thus M = u--2y, where y is measured from an arbitrary origin. Note that here y 
increases towards the axis of rotation and that a positive aMli3y is an inertially 
unstable situation. 

3. Results and discussion 
The computer code is based upon the dimensional equations, and results are shown 

in c.g.s. units. In  all cases shown here SZ, y and D are 1 in c.g.s. units. Ro is varied 
by changing ga, Ri is varied by changing either Ro or AT in the Eady-state model 
and either Ro, AT or Pr in the Hadley-cell model. Note that a fixed AT in the former 
model implies that  the slope of the basic state isotherms throughout the fluid is fixed. 
Fixing AT in the Hadley-cell model does not imply this: As Ro or Pr are varied the 
boundary-layer advection changes, and the slope of the interior isotherm changes. 
Note, however, that  if Pr and AT are changed while fixing Ro and Ri, the slope of 
the interior isotherms remains constant. 

The results shown here, unless noted otherwise, are for integrations which have been 
conducted until the waves were fully developed and the rates of change of the 
integrated energy components were small. For example, case A1 was integrated twice 
as long as shown in figure 5 .  The stream function (9) shown in the plots is defined 
by a ~ r / a Z  = -v, a@r/ay = w. 

3.1, Corotating boundaries 
This is the model studied by Antar & Fowlis (1982). As mentioned previously, we 
may expect to  run into trouble seeking SBI owing to convective instability in the 
boundary layers, and indeed this was a complication. The results of calculations are 
summarized in table 1. There were cases where boundary-layer convection occurred 
as the primary instability, and two cases where i t  occurred along with SBI or may 
have been a secondary instability. 

An example of steady well-developed SBI waves for Pr = 1 is shown in figure 3 
(case Al).  The meridional motions consist of cells (imposed upon the basic Ekman 
flow) oriented at midlevel at an angle slightly to  the horizontal of the basic isotherms. 
The cells are rather symmetric; i.e. the clockwise ones are of about the same size and 
shape as the counterclockwise ones. On the average, heat is transported upward, and 
thus the convective energy-conversion term ( E , )  in (2.16) is positive. The term ( E , )  
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Case Ro 

A1 3.75 

A2 5.0 

A3 3.75 

A4 3.75 

A5 5.0 
A6 2.5 
A7 10 

Ri E 

0.68 0.001 

0.68 0.001 

0.68 0.00 14 14 

0.68 0.000707 

0.84 0.001 
0.68 0.001 
0.92 0.001 

Pr L 

1 .oo 2.4 

1 .o 2.4 

2.0 2.4 

0.5 2.4 

1 .o 2.0 
1 .o 2.0 
1 .o 2.0 

Results 

Steady symmetric 
baroclinic waves 

Symmetric baroclinic 
waves and boundary- 
layer instability ; 
persistent unsteadiness 

Concurrent boundary- 
layer convection and 
SBI; persistent 
unsteadiness 

Steady symmetric 
baroclinic waves 

Very weak SBI 
Weak SBI 
Boundary -layer 
convection, followed 
by 'chaotic' flow 
throughout 

TABLE 1. Cases computed for the Hadley-cell model. The numerical 
parameters were J = 21, K = 23, p = 1.5, 8 = 0.11 for all cases. 

A = 0.05 

A = 0.02 A = 0.2 A = 0.001 

FIGURE 3. Results of calculations for case A1 : (a) temperature; ( b )  zonal velocity; (c) total stream 
function; (d )  deviation temperature; ( e )  deviation zonal velocity u ; ( f )  deviation stream function. 
The coordinate z increases upward, y increases to the left. Dashed contours indicate negative values, 
A is the contour interval. See table 1 for true length/height aspect ratio. 

in (2.16) is also positive, but much smaller. The magnitude of (E,) is much smaller 
than the other energy conversions in this and all other cases in this study ; ( E 4 )  (with 
the basic state v subtracted from V) is positive and slightly larger than ( E 2 ) .  (The 
numbers for ( E J ,  ( E , )  and (E,)  are similar to those of case B1, table 3.) In plots 
of the average ii, fi and versus the analytic basic state (figure 4) we see that 
temperature is significantly affected, reflecting the lowering of the potential energy 
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1 .o 
0.9 

0.8 
0.7 

5 0.6 

0.4 

0.3 

0.2 

0.1 
0 

g 0.5 

. .  
c i -  

18.4 18.5 18.6 18.7 18.8 18.9 19.0 1 

Temperature 

I .o 
0.9 

0.8 

0.7 

5 0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0 
-0.8 -0.4 0 0.4 0.8 

Zonal velocity 

O . ]  0 i 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 

Meridional velocity 

FIGURE 4. Analytic basic state (points) and average values after waves 
were fully developed (solid curve) for case A l .  

by both (E , )  and (E4). The meridional component V is slightly increased, as the 
waves induce an additional thermally direct meridional circulation. The zonal 
component U is hardly affected a t  all, although (E,)  is non-zero, indicative of the 
compensating effect of the increase in V, which tends to increase ii via Coriolis 
deflection. It is noted that most of the contribukion to (E , )  is in and near the 
boundary layers, which is also where the increase in V is located. 

From the plots of the deviations uf and v’, i t  may be seen that they are positively 
correlated near the boundaries and negatively correlated in the interior. The 
amplitudes of u’ and v‘ are largest near the boundary layers. This is also true for the 
Eady-state model. 

The plots of the energy components ((PE), (KE), (m)) with time are shown 
in figure 5. As previously stated, the initial condition was the analytic basic state, 
and computer round-off error and truncation error due to finite-differencing were 
allowed to supply the perturbations. The initial small oscillation is due to a 
computational mode present after the first time step. Both components of KE (KE’ 
and m) grow at the expense of PE when the wave develops. The waves ‘overshoot ’, 
and K E  decreases after some maximum value, after which an approximate 
equilibration occurs rather rapidly. (That is, there is not much oscillation, a t  least 



Fully nonlinear symmetric baroclinic waves 353 

; $ c a! ::::: 0.136 

0.134 

0 40 80 120 160 200 240 280 

; $ c a! ::::: 0.136 

0.134 

0 40 80 120 160 200 240 280 
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FIGURE 5.  Development with time of 

0.13401 

0 40 80 120 160 200 240 280 

Time 

i:;;; 
-0.20 

-0.21 
0 40 80 120 160 200 240 280 

Time 

energy integrals for case A l .  

in the same scale as the original overshoot.) The same is true of all cases considered 
here, except for those noted to be unsteady in tables 1 and 2. For the small-Pr cases 
the overshoot was much smaller that that of the other cases. 

Figure 6 shows a case (for larger -AT) where both SBI and convection in the 
boundary layers are developing (case A2). As integration is continued past the point 
shown, the convection quickly disturbs the Ekman-layer flow to the point that  the 
convectively stable (aT/az > 0 )  temperature profile in the interior gives way to a 
locally unstable profile in some regions, and an unsteady, ‘chaotic’ flow, with both 
SBI and convection, is evident. The detailed study of this evolution is beyond the 
intent of this work. Other cases were considered where the boundary-layer convection 
was the primary instability, giving rise to convection throughout, and SBI did not 
have enough time to develop. This was particularly true for P r  > 1 .  Note that for 
large Pr the effect of thermal advection is greater and therefore Ra,  increases. To 
fix Ri and Ro with increasing Pr requires increasing the negative vertical temperature 
difference -AT, increasing the chance for convective instability. 

For Pr = 1 ,  finding a cut-off of instability as Ri nears 1 from below for a fixed AT 
(reported by Antar & Fowlis 1982) was impossible, because as Ro is increased (in order 
to increase Ri), Ra,  increases (faster than Ro) ,  and boundary-layer convection sets 
in (see table 1 ,  case A7). Clearly the stability diagrams in Antar & Fowlis (1982) must 
be interpreted with care. Convective boundary-layer modes were not considered in 
their analysis (1983 personal communication). 

3.2. Eady basic state (moving boundaries) 

The cases considered in the ‘Eady’ configuration are summarized in table 2. 
More-detailed study was given to this case. The primary goal here is to  examine how 
the structures and energetics of the flows change with varying parameters. Ideally 
we would like to  isolate the effects of varying each parameter individually. However, 
the critical Richardson number Ri, is in general a function of the other parameters, 
and hence, if only one parameter is changed, the strength of the equilibrated flow may 
be very different. We would prefer that  the additional complication of increased 
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( U i  

Stream function A = 0.001 

FIGURE 6. Results of calculations for case A2. Contour scheme is as in figure 3. 
See table 1 for true hgt,h/height aspect ratio. 

nonlinearity not be present as we compare different cases. Therefore, if a particular 
set of parameters resulted in waves that were either too weak or too strong to be 
compared with others, Ri was approximately adjusted by changing AT. Weber’s 
(1980) expression (38) was used as an initial guide to Ri- (see table 2), but note that 
because of his approximations this expression is not exact. 

The cases for Pr = 1 and corresponding Ri and Ro were compared with those of 
$3.1. The energetics and structure of the waves were similar. The discussion there 
of the case A1 applies here as well. I n  figure 7 there are presented contour plots for 
a case ( B l )  where Ro is somewhat smaller than case A1 in $3.1. These fields will be 
compared with those for non-unit Prandtl number below. The energy-conversion 
integrals are given in table 3. 

The problems that were encountered with convection in the boundary layers in the 
basic state of the Hadley-cell model were not, of course, encountered in the Eady-state 
model. However, the nonlinearity of the flow increased dramatically when RilRi ,  is 
decreased and the waves can become so strong that either one or both of the following 
can occur: (i)  ‘fronts’ (i.e. strong gradients over a narrow region) can develop such 
that the grid resolution used here becomes inadequate and (ii) apparently chaotic 



Fully nonlinear symmetric baroclinic waves 355 

Case Ro Ri Ri, E Pr A, L s Result 

B1 3 0.68 0.83 0.001 1 0.46 2.0 1.0 Moderate, steady 
SBI; k = 3 
dominant 

B2 3 0.83 1.01 0.001 2 0.56 2.2 1.0 Same as B1 
B3 3 0.83 0.78 0.001 0.5 0.42 2.0 1.0 Same as B1 
B4 3 0.68 1.40 0.002 4 1.1 3.6 1.0 Highly nonlinear 

SBI; chaotic 
behaviour; k = 4 
dominant 

D5 3 0.68 1.27 0.0005 0.25 0.34 2.2 1.0 Sameas B4 
B6 24.7 0.48 0.56 0.02 1 6.1 20.0 10.0 Same as B1 
B7 24.7 0.84 0.94 0.001 1 2.3 9.0 1.0 Same as B1 

SBI; k = 4 
dominant 

B9 7.5 0.68 0.93 0.001 1 0.79 4.0 1.0 Same as B4, but 
k = 3 dominant 

B8 5 0.16 - 0.02 1 - 6.0 10.0 Moderate, steady 

TABLE 2. Cases computed for Eady-state model. The numerical parameter p was 1.0, and K was 
25 for all cases. J was 31 for cases B4 and B5, and was 49 for all others. 

A = 0.02 

A = 0.2 

(d ) 

A = 0.05 

A = 0.002 

FIGURE 7. Results of calculations for case B1 : (a) temperature; ( b )  zonal velocity; (c) deviation T ;  
( d )  deviation u ; ( e )  total $. Contour scheme is as in figure 3. See table 2 for true length/height aspect 
ratio. 
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A = 0.001 

FIGURE 8. Results of calculations for case B2: (a) temperature; ( b )  zonal velocity; (c) deviation 2'; 
( d )  deviation u ;  ( e )  total $. Contour scheme is as in figure 3. See table 2 for true length/height aspect 
ratio. 

convection can occur. The study of these highly nonlinear flows is not pursued in this 
paper, other than to report some cases where they occurred (table 2). 

The fields for case B2 (Pr = 2) are shown in figure 8. The relatively larger damping 
by viscosity of the inertial restoring force than of the buoyancy force by thermal 
diffusion results in the clockwise (CW) cells being of greater strength than the 
counterclockwise (CCW) cells. This is because advection by the CW cells tends to  
decrease the convective stability but to increase the inertial stability, and that CCW 
cells tend to do the opposite. When Pr = 1 these effects approximately cancel so that 
the cells are of similar strength. But when the inertial restoring force is suppressed, 
the advection of heat by the cells acts to destabilize the CW cells and to stabilize 
the CCW cells, without compensation by the advection of momentum. (For Pr < 1 
(case B3) the inertial force is dominant, and the opposite is true (figure 9) . )  
Furthermore, in the case of Pr > 1 ,  the advection of angular momentum is dominated 
by the Coriolis term, and the inertial stability is actually greater in the vicinity of 
the CW cells, contrary to the effects of nonlinear advection. For Pr < 1 (case B3), 
on the other hand, the zonal velocity field is in response to the nonlinear advection 
by the cells. This point is illustrated by figure 10, where the total zonal velocity fields 
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A = 0.2 A = 0.005 

A = 0.2 A = 0.04 

A = 0.001 

FIGURE 9. Results of calculations for case B3: ( a )  temperature; ( b )  zonal velocity; (c) deviation T ;  
( d )  deviation u ;  ( e )  total $. Contour scheme is as in figure 3. See table 2 for true length/height aspect 
ratio. 

are overlayed with the stream-function fields. A similar effect occurs with the 
thermal advection. Nonlinear advection is important for Pr = 2 but not for Pr = 0.5, 
where advection of the basic horizontal gradient dominates. An effect of Pr and 
nonlinearity is seen in the flow out of the boundary layer. That clockwise cells are 
stronger for Pr = 2 results in the upward motion out of the lower boundary layer 
bringing relatively warm fluid upward and in cold fluid being brought downward out 
of the upper boundary layer. That counterclockwise cells are stronger for Pr = 0.5 
results in the transport of cold fluid upward out of the lower boundary layer. and 
in the transport of warm fluid downward from the upper boundary layer. After 
leaving the boundary layer, the thermal deviation is retained for Pr = 2 but not for 
Pr = 0.5. 

Table 3 gives the energy-conversion integrals and energy changes from the analytic 
basic state to that with waves for some of the cases computed. The quant,ities (m), 
(KE’) and (PE) are normalized by dividing by the analytic basic state (KE). The 
energy-conversion integrals were normalized by (KE’). The effect of Prandtl number 
upon the energetics of the flow is quite strong. A schematic diagram of the energy 
transfer for cases B1, B2 and B3 is given in figure 11. The ultimate source for the 
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(a 1 (b ) 

FIGURE 10. Overlay of stream function and zonal velocity for cases B2 (a )  and B3 ( 6 ) .  

wave KE' in all cases is PE. For Pr = 1 and 2 the wave-energy source is ( E l ) ;  for 
Pr = 0.5 the source is (E,)  via (E,). Thus for Pr = 0.5 there is a thermally direct 
Hadley circulation induced by the waves which extracts PE. For Pr = 2 the induced 
circulation is in the opposite direction, thermally indirect, and is raising (PE),  
although (E , )  is large enough that the net effect of the wavcs upon (PE) is that  
(PE) is lowered. We note that for Pr = 2 the total change in (PE) is relatively large. 
I n  all cases, (PE) was decreased and (m) was slightly increased as a result of the 
wave action. This is a result of the approximate equality of (E , )  to ( E , ) ,  rather than 

That the effect of (E,)  will tend to  compensate for the effect of ( E , ) ,  a t  least fur 
small viscosity, may be seen from considering (2.17). Assuming (E , )  is small (justified 

to - ( E l ) .  

a posteriori) 

Note that (E,)  = (Vz) = (2VU);  i.e. that  it is just the horizontal flux of basic-state 
angular momentum by the induced Hadley circulation. I n  the inviscid case this flux 
is balanced by the vertical eddy flux represented by (E,) .  Furthermore, if the zonal 
momentum equation (2.1) is multiplied by U and integrated 

Thus, in the inviscid case, any difference between (E,)  and (E,)  that  would cause 
a decrease in aii /az  results in (E,)  > (E,) ,  which is a contradiction since a decrease 
in a i i /a z  would occur only when (E , )  > (E,) .  A similar argunent can be made against 
any increase in a.illaz. In  the viscous case, a significant difference between (E , )  and 
(E,) can be tolerated, since viscous diffusion can dissipate the excess momentum flux. 
This difference was small in all cases computed here except for case B7. It is 
interesting that in all cases (E,> was very much closer to (E,)  than to  - ( E l ) ,  in 
view of the inviscid forms of (2.15) and (3.1), in which all three must be equal. That 
is, diffusion apparently totally releases the constraint that  (E,)  = - ( E l ) ,  but does 
not greatly release the constraint that (E,)  x (E , ) .  Thus the average potential energy 
is much more affected by the waves than the average kinetic energy. Note that, for 
the opposite to be true, (p) would have to be positive and of equal magnitude to 
(F). Although this is not apriori an impossibility, i t  was never observed here. Note 
that the result of the nonlinear work of Walton (1975) was that (E,)  = ( E J .  This 
is because he assumed small nonlinear effects and neglected friction when solving the 
second-order momentum equations. He did not neglect thermal diffusion in the 
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Case (KE’) (Am) (APE) (El) (E,)  ( E d  (E,)  <F> (F’) 
B1 0.0572 0.0113 -0.333 0.543 0.0933 -0.00101 0.147 -0.690 -0.635 
B2 0.0289 0.00597 -0.333 1.263 -0.627 0.00155 -0.577 -0.686 -0.637 
B3 0.0269 0.00298 -0.160 -0.158 0.629 -0.00118 0.657 -0.499 -0.470 
B6 0.0428 0.00164 -0.0595 0.114 0.995 -0.00909 1.073 -1.187 -1.100 
B7 0.0255 0.0158 -0.148 0.468 0.221 -0.00402 0.397 -0.865 -0.685 
B8 0.0378 0.00203 -0.0742 0.716 0.807 -0.00622 0.890 -1.606 -1.529 

TABLE 3. Energetics 

PE PE PE 

(a ) (b ) (c ) 

FIGURE 11. Schematic diagram of energy flow for cases B1, B2 and B3. 
Other Pr = 1 cases gave somewhat different results. 

A = 2.0 

A = 2.0 

A = 0.05 

A = 0.04 

d = 0.02 

FIGURE 12. Results of calculations for case B6: (a) temperature; (b) zonal velocity; ( c )  deviation 
T ;  ( d )  deviation u ;  ( e )  total 11.. Contour scheme is as in figure 3. See table 2 for true length/height 
aspect ratio. 
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solution for the second-order temperature field, and therefore his ( E l )  and (E,)  are 
not of equal magnitude. Thus the present results are not unexpected. 

If the hydrostatic approximation is made, the dependence upon the thermal 
Rossby number is removed from the equations (Stone 1971; Walton 1975; Emanuel 
1979). This approximation is valid when the parameter S = Ri Ro2 ( =  N 2 / Q 2 ,  where 
N is the buoyancy frequency) is large. I n  general, however, there does exist a 
dependence upon the thermal Rossby number, as seen in the results of Weber (1980). 
For larger thermal Rossby number the critical Richardson number is increased; that 
is, the flow is more unstable. The present calculations confirmed this result : if all 
parameters (including Ri) are fixed a t  the same values as those for case B1 except 
that  Ro is increased, the instabilities are more vigorous (case B9). 

The energetics are also functions of Ro. For flows of large S (cases B6 and B7) the 
energy transformation (E,)  becomes more important (this is consistent with the 
calculations by Emanuel 1979). Cases B6 and B7 are similar except that  B6 is with 
much higher Ekman number, and may be compared with the no-slip cases of 
Emanuel. Although ( E l )  is not negative, as in Emanuel’s cases, i t  is small compared 
with (E , ) ,  and thus the energy source may be considered to be inertial. The fields 
for case B6 are shown in figure 12. That (E , )  becomes so important for the viscous 
hydrostatic case is due to  the relatively large static stability, which gives preference 
to motions that are more nearly parallel to the isotherms (i.e. more vertical). When 
that is the case, the angular-momentum transport is greater than the heat transport 
(refer to figure 1) .  For a non-hydrostatic case with larger Ekman numbers (B8), ( E l )  
and (E , )  are both positive, and are in fact almost equal. 

4. Summary 
Fully developed, quasi-steady symmetric baroclinic waves have been computed for 

two configurations, both of which have temperature profiles with constant horizontal 
gradients imposed upon upper and lower boundaries. The horizontal length of the 
physical domain has been assumed to be large compared with the vertical. The first 
configuration was that with corotating upper and lower boundaries, resulting in 
thermally direct boundary-layer flow (i.e. Hadley cell) in the basic state. The second 
configuration was that with the upper and lower boundaries moving with the zonal 
wind such that there were no boundary layers in the basic state. Both configurations 
were of no-slip horizontal boundaries. 

Calculations showed that the thermal boundary layers in the first (Hadley-cell) 
configuration may be convectively unstable. When this was the case, a steady flow 
could not be found, and symmetric baroclinic waves were not well defined. Therefore, 
detailed study of symmetric baroclinic instability (SBI) was given to  the second 
configuration. 

Cases were computed with independently varied Ro, Ri, E and Pr. The waves are 
stronger for smaller Ri and E,  for larger Ro, and for Pr away from one. The region 
in parameter space where the waves are weak enough to  result in steady flow is not 
large; as any of the parameters are varied to give stronger waves there is indication 
that turbulence can arise due perhaps to strong horizontal shear in the waves, to 
regions of negative vertical temperature derivative, or to both. A propensity for the 
waves to result in strong fronts was noted. More detailed calculations are required 
to study these aspects of SBI. 

I n  all cases, the energy source for the waves was the flow’s potential energy and 
the basic state zonal flow was insignificantly affected by the waves. For Pr < 1 the 
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energy conversion was from potential energy to mean kinetic energy to wave kinetic 
energy. For Pr > 1 the energy conversion was directly from potential energy to wave 
kinetic energy. For Pr = 1 the energy conversion was by either or both methods, 
depending upon the other parameters. The effect upon the mean flow was to slightly 
raise the mean kinetic energy, primarily the result of a mean meridional flow. The 
induced mean meridional circulation was thermally direct for Pr < 1 and thermally 
indirect for (large enough) Pr > 1, such as to approximately cancel the effect of 
vertical eddy flux of angular momentum. 

The results here suggest that  a search for symmetric baroclinic instability in the 
laboratory can best be performed by either using a low-Prandtl-number fluid or by 
an annulus with differentially rotating top and bottom. Otherwise, thermal convection 
in the boundary layers may prevent the development of SBI, although it may be 
possible to avoid this complication by not allowing Ro to become too large. 

Since the model utilized here allows no longitudinal variations, the flows calculated 
may or may not be seen in a real situation which is approximated by the current 
idealized configurations. The basic state and/or the fully developed SBI flows may 
be unstable to perturbations with longitudinal variations. Busse & Chen (1981) have 
suggested that the maximum linear growth rate is not achieved for purely symmetric 
waves. Antar & Fowlis (1983) have shown that, for small enough Ri, the maximum 
growth rate is in fact achieved when very long wavelengths in the longitudinal 
direction are allowed. Thus, the flows here may be expected to be close to those that 
would be observed in an experiment whose geometry is well approximated by the 
infinite channel. 

The results of the present study showing that vigorous two-dimensional waves are 
possible have interesting implications for works which attempt to  determine regime 
diagrams numerically by first calculating a two-dimensional flow and then testing 
the stability of that  flow to three-dimensional perturbations. The study by Miller & 
Gall (1983b), for example, was successful in using this technique to calculate the 
transition curve for the baroclinic annulus. This technique may not work, however, 
if there exist both two-dimensional and three-dimensional instabilities which may in 
reality be competing for the same energy source (in this case, potential energy). A 
calculation of the two-dimensional basic state may allow the two-dimensional modes 
to ‘consume’ the energy first, without competition. Such a case may result in a 
prediction of two-dimensional flow where in the real situation three-dimensional 
disturbances are observed. In  the ideal situation studied here, where an analytic basic 
state is known, a strictly linear approach (e.g. Antar & Fowlis 1983) would perhaps 
be more valid in determining the most likely disturbance to  be seen. Nonlinear models 
would be required, of course, to determine whether the different disturbances can 
coexist, or whether a (linearly) slower growing disturbance can eventually overtake 
the faster growing one - perhaps resulting in the disappearance of the latter. In  actual 
laboratory conditions, where an analytic basic state is not known, it may be necessary 
to use a two-dimensional model that can find the multiple steady states, or to use 
a fully nonlinear three-dimensional model in order to determine quantitatively a 
transition curve. The results of the latter technique may be sensitive to initial 
conditions. 

Most of this work was performed while the author was a National Research Council 
postdoctoral associate a t  MSFC. He wishes to express gratitude for the support and 
encouragement from Dr W. W. Fowlis, his NRC adviser. The NRC associateship was 
funded by NASA, Office of Space Science and Applications, Atmospheric Processes 
Program. 
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